请输入您要查询的字词:

 

单词 GradientAndDivergenceInOrthonormalCurvilinearCoordinates1
释义

Gradient and Divergence in Orthonormal Curvilinear Coordinates


Gradient and Divergence in Orthonormal Curvilinear CoordinatesSwapnil Sunil JainAug 7, 2006

Gradient and Divergence in Orthonormal Curvilinear Coordinates

Gradient in Curvilinear Coordinates

In rectangular coordinates (where f=f(x,y,z)), an infinitesimalMathworldPlanetmathPlanetmath length vector dl is given by

dl=dxx^+dyy^+dzz^

the gradient is given by

=xx^+yy^+zz^

and the differentialMathworldPlanetmath change in the output is given by

df=fdl=fxdx+fydy+fzdz

Similarly in orthonormal curvilinear coordinates ( where f=f(q1,q2,q3)), the infinitesimal length vector is given by11See my article Unit Vectors in Curvilinear Coordinates for an insight into this expression.

dl=h1dq1q^1+h2dq2q^2+h3dq3q^3

where

hi=k(xkqi)2 and q^i=1hi(xkqi) for i1,2,3

So if

=αq1q^1+βq2q^2+γq3q^3

then since we know that

df=fq1dq1+fq2dq2+fq3dq3

and

df=Fdl=αh1fq1dq1+βh2fq2dq2+γh3fq3dq3

this implies that

α=1hi;β=1h2;γ=1h3

Hence,

=1h1q1q^1+1h2q2q^2+1h3q3q^3
=i1hiqiq^i

Divergence in Curvilinear Coordinates

In the previous sectionMathworldPlanetmath we concluded that in curvilinear coordinates, the gradient operator is given by

=i1hiqiq^i

Then for F=F1q^1+F2q^2+F3q^3, the divergence of F is given by

F=(i1hiqiq^i)F

which is not equal to

(i1hiqiq^i)Fi1hiFiqi

as one would think! The real expression can be derived the following way,

=i[(1hiqiq^i)F]
=i[(1hiq^i)(Fqi)]
=i[(1hiq^i)(qi(jFjq^j))]
=i[(1hiq^i)(jqi(Fjq^j))]
=i[(1hiq^i)(jq^jFjqi+Fjq^jqi)]
=i[(1hiq^i)(jq^jFjqi+jFjq^jqi)]
=i[(1hiq^i)jq^jFjqi+(1hiq^i)jFjq^jqi]
=i[(1hiq^i)jq^jFjqi]call it A+i[(1hiq^i)jFjq^jqi]call it B
A=i[(1hiq^i)jq^jFjqi]
=i[1hij(q^iq^j)δijFjqi]
=i1hiFiqi
B=i[(1hiq^i)jFjq^jqi]

Using the following equality22The proof of this identity is left as an exercise for the reader.

q^jqi=q^ihjhiqj  ij

we can write B as

B=i[(1hiq^i)jFj(q^i1hjhiqj)]  ij
=i[1hijFj(q^iq^i)11hjhiqj]  ij
=i[1hijFj1hjhiqj]  ij
=ijFjhjhihiqj
=i1F1h1hihiq1+i2F2h2hihiq2+i3F3h3hihiq3
F=A+B
=i1hiFiqi+i1F1h1hihiq1+i2F2h2hihiq2+i3F3h3hihiq3
=[1h1F1q1+1h2F2q2+1h3F3q3]
+[F1h1h2h2q1+F1h1h3h3q1]
+[F2h2h1h1q2+F2h2h3h3q2]
+[F3h3h1h1q3+F3h3h2h2q3]

Collecting similarMathworldPlanetmathPlanetmath terms together we get,

F=[1h1F1q1+F1h1h2h2q1+F1h1h3h3q1]
+[1h2F2q2+F2h2h1h1q2+F2h2h3h3q2]
+[1h3F3q3+F3h3h1h1q3+F3h3h2h2q3]

If we define ΩΠihi, we can further write the above expression as

F=[h2h3ΩF1q1+F1h3Ωh2q1+F1h2Ωh3q1]
+[h1h3ΩF2q2+F2h3Ωh1q2+h1F2Ωh3q2]
+[h1h2ΩF3q3+h2F3Ωh1q3+h1F3Ωh2q3]
=1Ω([F1q1h2h3+F1h3h2q1+F1h2h3q1]
+[h1F2q2h3+h1q2F2h3+h1F2h3q2]
+[h1h2F3q3+h1q3h2F3+h1h2q3F3])
=1Ω(q1(F1h2h3)+q2(h1F2h3)+q3(h1h2F3))

Hence,

F=1Ωiqi(ΩhiFi) where Ω=Πihi
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 22:32:53