单词 | branch and bound method |
释义 | branch and bound method A knapsack has maximum weight of 15, and the following items are available: A has weight (w) 5 and value (v) 10, written A (5, 10) with B (7, 11), C (4, 8) and D (4, 12). Method. Place the items in decreasing order of value per unit weight, i.e. D, A, C, B (A and C could be reversed). Then construct a vector (x1, x2, x3, x4) where xi = 0 if the item is not being taken and xi = 1 if it is. Start with (0, 0, 0, 0). At each stage, if a branch has not been terminated, and there are n zeros at the end of the vector, construct n branches which change exactly one of those zeros to a one and for which the total weight does not exceed the limit so the first stage will have four branches (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1). Calculate the total weight (w) for each new branch created, and the value (v), and repeat the process. ![]() Example illustrating the branch and bound method From the figure we see that the optimal solution is to choose items B, C, D with total weight 15 and value 31. |
随便看 |
|
数学辞典收录了4151条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。