请输入您要查询的字词:

 

单词 Pólya's Random Walk Constants
释义

Pólya's Random Walk Constants

N.B. A detailed on-line essay by S. Finchwas the starting point for this entry.


Let be the probability that a Random Walk on a -D lattice returns to the origin. Pólya (1921) provedthat

(1)

but
(2)

for . Watson (1939), McCrea and Whipple (1940), Domb (1954), and Glasser and Zucker (1977) showed that
(3)

where


(4)
 (5)
 (6)
 (7)
 (8)

where is a complete Elliptic Integral of the First Kind and is the Gamma Function. Closedforms for are not known, but Montroll (1956) showed that
(9)

where


 
 (10)

and is a Modified Bessel Function of the First Kind. Numerical values from Montroll (1956) and Flajolet(Finch) are

40.20
50.136
60.105
70.0858
80.0729

See also Random Walk


References

Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/polya/polya.html

Domb, C. ``On Multiple Returns in the Random-Walk Problem.'' Proc. Cambridge Philos. Soc. 50, 586-591, 1954.

Glasser, M. L. and Zucker, I. J. ``Extended Watson Integrals for the Cubic Lattices.'' Proc. Nat. Acad. Sci. U.S.A. 74, 1800-1801, 1977.

McCrea, W. H. and Whipple, F. J. W. ``Random Paths in Two and Three Dimensions.'' Proc. Roy. Soc. Edinburgh 60, 281-298, 1940.

Montroll, E. W. ``Random Walks in Multidimensional Spaces, Especially on Periodic Lattices.'' J. SIAM 4, 241-260, 1956.

Watson, G. N. ``Three Triple Integrals.'' Quart. J. Math., Oxford Ser. 2 10, 266-276, 1939.

随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2024/11/15 3:27:29