单词 | Pólya's Random Walk Constants | ||||||||||||||||||||||||||||||||||||||||||||||||
释义 | Pólya's Random Walk ConstantsN.B. A detailed on-line essay by S. Finchwas the starting point for this entry. Let be the probability that a Random Walk on a -D lattice returns to the origin. Pólya (1921) provedthat
where is a complete Elliptic Integral of the First Kind and is the Gamma Function. Closedforms for are not known, but Montroll (1956) showed that
and is a Modified Bessel Function of the First Kind. Numerical values from Montroll (1956) and Flajolet(Finch) are
Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/polya/polya.html Domb, C. ``On Multiple Returns in the Random-Walk Problem.'' Proc. Cambridge Philos. Soc. 50, 586-591, 1954. Glasser, M. L. and Zucker, I. J. ``Extended Watson Integrals for the Cubic Lattices.'' Proc. Nat. Acad. Sci. U.S.A. 74, 1800-1801, 1977. McCrea, W. H. and Whipple, F. J. W. ``Random Paths in Two and Three Dimensions.'' Proc. Roy. Soc. Edinburgh 60, 281-298, 1940. Montroll, E. W. ``Random Walks in Multidimensional Spaces, Especially on Periodic Lattices.'' J. SIAM 4, 241-260, 1956. Watson, G. N. ``Three Triple Integrals.'' Quart. J. Math., Oxford Ser. 2 10, 266-276, 1939. |
||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。