请输入您要查询的字词:

 

单词 Repunit
释义

Repunit

A (generalized) repunit to the base is a number of the form


The term ``repunit'' was coined by Beiler (1966), who also gave the first tabulation of known factors. Repunits with are called Mersenne Numbers. If , the number is called a repunit(since the digits are all 1s). A number of the form


is therefore a (decimal) repunit of order .


Sloane-Repunits
2Sloane's A0002251, 3, 7, 15, 31, 63, 127, ...
3Sloane's A0034621, 4, 13, 40, 121, 364, ...
4Sloane's A0024501, 5, 21, 85, 341, 1365, ...
5Sloane's A0034631, 6, 31, 156, 781, 3906, ...
6Sloane's A0034641, 7, 43, 259, 1555, 9331, ...
7Sloane's A0230001, 8, 57, 400, 2801, 19608, ...
8Sloane's A0230011, 9, 73, 585, 4681, 37449, ...
9Sloane's A0024521, 10, 91, 820, 7381, 66430, ...
10Sloane's A0022751, 11, 111, 1111, 11111, ...
11Sloane's A0161231, 12, 133, 1464, 16105, 177156, ...
12Sloane's A0161251, 13, 157, 1885, 22621, 271453, ...


Williams and Seah (1979) factored generalized repunits for and . A (base-10) repunit can bePrime only if is Prime, since otherwise is a Binomial Number which can be factored algebraically.In fact, if is Even, then . The only base-10 repunit Primes for are, 19, 23, 317, and 1031 (Sloane's A004023; Madachy 1979, Williams and Dubner 1986, Ball and Coxeter 1987). The number of factorsfor the base-10 repunits for , 2, ... are 1, 1, 2, 2, 2, 5, 2, 4, 4, 4, 2, 7, 3, ... (Sloane's A046053).


Sloane of Prime -Repunits
2Sloane's A0000432, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, ...
3Sloane's A0284913, 7, 13, 71, 103, 541, 1091, 1367, 1627, 4177, 9011, 9551, ...
5Sloane's A0040613, 7, 11, 13, 47, 127, 149, 181, 619, 929, 3407, 10949, ...
6Sloane's A0040622, 3, 7, 29, 71, 127, 271, 509, 1049, 6389, 6883, 10613, ...
7Sloane's A0040635, 13, 131, 149, 1699, ...
10Sloane's A0040232, 19, 23, 317, 1031, ...
11Sloane's A00580817, 19, 73, 139, 907, 1907, 2029, 4801, 5153, 10867, ...
12Sloane's A0040642, 3, 5, 19, 97, 109, 317, 353, 701, 9739, ...


A table of the factors not obtainable algebraically for generalized repunits (a continuously updated version of Brillhartet al. 1988) is maintained on-line. These tables include factors for (with odd) and (for ftp://sable.ox.ac.uk/pub/math/cunningham/10- andftp://sable.ox.ac.uk/pub/math/cunningham/10+. After algebraically factoring , these are sufficient for completefactorizations. Yates (1982) published all the repunit factors for , a portion of which are reproduced in theMathematica notebook by Weisstein.


A Smith Number can be constructed from every factored repunit.

See also Cunningham Number, Fermat Number, Mersenne Number, Repdigit, Smith Number


References

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 66, 1987.

Beiler, A. H. ``11111...111.'' Ch. 11 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover, 1966.

Brillhart, J.; Lehmer, D. H.; Selfridge, J.; Wagstaff, S. S. Jr.; and Tuckerman, B. Factorizations of , , Up to High Powers, rev. ed. Providence, RI: Amer. Math. Soc., 1988. Updates are available electronically from ftp://sable.ox.ac.uk/pub/math/cunningham.

Dubner, H. ``Generalized Repunit Primes.'' Math. Comput. 61, 927-930, 1993.

Guy, R. K. ``Mersenne Primes. Repunits. Fermat Numbers. Primes of Shape .'' §A3 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 8-13, 1994.

Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, pp. 152-153, 1979.

Ribenboim, P. ``Repunits and Similar Numbers.'' §5.5 in The New Book of Prime Number Records. New York: Springer-Verlag, pp. 350-354, 1996.

Snyder, W. M. ``Factoring Repunits.'' Am. Math. Monthly 89, 462-466, 1982.

Weisstein, E. W. ``Repunits.'' Mathematica notebook Repunit.m.

Williams, H. C. and Dubner, H. ``The Primality of .'' Math. Comput. 47, 703-711, 1986.

Williams, H. C. and Seah, E. ``Some Primes of the Form . Math. Comput. 33, 1337-1342, 1979.

Yates, S. ``Prime Divisors of Repunits.'' J. Recr. Math. 8, 33-38, 1975.

Yates, S. ``The Mystique of Repunits.'' Math. Mag. 51, 22-28, 1978.

Yates, S. Repunits and Reptends. Delray Beach, FL: S. Yates, 1982.

随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/4/4 16:21:52