单词 | Triangle | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 | Triangle![]() A triangle is a 3-sided Polygon sometimes (but not very commonly) called the Trigon. All triangles areconvex. An Acute Triangle is a triangle whose three angles are all Acute. A triangle withall sides equal is called Equilateral. A triangle with two sides equal is calledIsosceles. A triangle having an Obtuse Angle is called an Obtuse Triangle. Atriangle with a Right Angle is called Right. A triangle with all sides a different lengthis called Scalene. ![]() The sum of Angles in a triangle is 180°. This can be established as follows. Let
Let ![]() The Straightedge and Compass construction of the triangle can be accomplished as follows. In the above figure, take In Proposition IV.4 of the Euclid If the coordinates of the triangle Vertices are given by
![]() ![]()
![]() In the above figure, let the Circumcircle passing through a triangle's Vertices haveRadius
![]() If a triangle has sides
In the above formulas, ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]()
gives the particularly pretty form
The Angles of a triangle satisfy
![]()
Let a triangle have Angles
![]() Trigonometric Functions of half angles can be expressed in terms of the triangle sides:
where ![]() The number of different triangles which have Integral sides and Perimeter
where ![]() ![]() ![]() ![]() ![]() ![]() ![]()
It is not known if a triangle with Integer sides, Medians, and Area exists(although there are incorrect Proofs of the impossibility in the literature). However, R. L. Rathbun,A. Kemnitz, and R. H. Buchholz have shown that there are infinitely many triangles with Rational sides (Heronian Triangles) with two Rational Medians (Guy 1994). In the following paragraph, assume the specified sides and angles are adjacent to each other. Specifying threeAngles does not uniquely define a triangle, but any two triangles with the same Anglesare similar (the AAA Theorem). Specifying two Angles
![]() ![]() ![]()
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]()
![]() There are four Circles which are tangent to the sides of a triangle, one internal and the rest external.Their centers are the points of intersection of the Angle Bisectors of the triangle. Any triangle can be positioned such that its shadow under an orthogonal projection is Equilateral. See also AAA Theorem, AAS Theorem, Acute Triangle, Alcuin's Sequence, Altitude, AngleBisector, Anticevian Triangle, Anticomplementary Triangle, Antipedal Triangle, ASS Theorem,Bell Triangle, Brianchon Point, Brocard Angle, Brocard Circle, Brocard Midpoint,Brocard Points, Butterfly Theorem, Centroid (Triangle), Ceva's Theorem, Cevian,Cevian Triangle, Chasles's Theorem, Circumcenter, Circumcircle, Circumradius,Contact Triangle, Crossed Ladders Problem, Crucial Point, D-Triangle, de LongchampsPoint, Desargues' Theorem, Dissection, Elkies Point, Equal Detour Point, EquilateralTriangle, Euler Line, Euler's Triangle, Euler Triangle Formula, Excenter, ExcentralTriangle, Excircle, Exeter Point, Exmedian, Exmedian Point, Exradius, ExteriorAngle Theorem, Fagnano's Problem, Far-Out Point, Fermat Point, Fermat's Problem,Feuerbach Point, Feuerbach's Theorem, Fuhrmann Triangle, Gergonne Point, Grebe Point,Griffiths Points, Griffiths' Theorem, Harmonic Conjugate Points, Heilbronn Triangle Problem,Heron's Formula, Heronian Triangle, Hofstadter Triangle, Homothetic Triangles, Incenter,Incircle, Inradius, Isodynamic Points, Isogonal Conjugate, Isogonic Centers,Isoperimetric Point, Isosceles Triangle, Kabon Triangles, Kanizsa Triangle, Kiepert'sHyperbola, Kiepert's Parabola, Law of Cosines, Law of Sines, Law of Tangents, LeibnizHarmonic Triangle, Lemoine Circle, Lemoine Point, Line at Infinity, Malfatti Points,Medial Triangle, Median (Triangle), Median Triangle, Menelaus' Theorem, Mid-Arc Points,Mittenpunkt, Mollweide's Formulas, Morley Centers, Morley's Theorem, Nagel Point,Napoleon's Theorem, Napoleon Triangles, Newton's Formulas, Nine-Point Circle, NumberTriangle, Obtuse Triangle, Orthic Triangle, Orthocenter, Orthologic, ParalogicTriangles, Pascal's Triangle, Pasch's Axiom, Pedal Triangle, Perpendicular Bisector,Perspective Triangles, Petersen-Shoute Theorem, Pivot Theorem, Power Point, Power(Triangle), Prime Triangle, Purser's Theorem, Quadrilateral, Rational Triangle, Routh'sTheorem, SAS Theorem, Scalene Triangle, Schiffler Point, Schwarz Triangle, Schwarz'sTriangle Problem, Seidel-Entringer-Arnold Triangle, Seydewitz's Theorem, Simson Line, SpiekerCenter, SSS Theorem, Steiner-Lehmus Theorem, Steiner Points, Stewart's Theorem,Symmedian Point, Tangential Triangle, Tangential Triangle Circumcenter, Tarry Point,Thomsen's Figure, Torricelli Point, Triangle Tiling, Triangle Transformation Principle,Yff Points, Yff TrianglesReferences Abi-Khuzam, F. ``Proof of Yff's Conjecture on the Brocard Angle of a Triangle.'' Elem. Math. 29, 141-142, 1974. Andrews, G. ``A Note on Partitions and Triangles with Integer Sides.'' Amer. Math. Monthly 86, 477, 1979. Baker, M. ``A Collection of Formulæ for the Area of a Plane Triangle.'' Ann. Math. 1, 134-138, 1884. Berkhan, G. and Meyer, W. F. ``Neuere Dreiecksgeometrie.'' In Encyklopaedie der Mathematischen Wissenschaften, Vol. 3AB 10 (Ed. F. Klein). Leipzig: Teubner, pp. 1173-1276, 1914. Beyer, W. H. (Ed.) CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 123-124, 1987. Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New York: Wiley, 1969. Davis, P. ``The Rise, Fall, and Possible Transfiguration of Triangle Geometry: A Mini-History.'' Amer. Math. Monthly 102, 204-214, 1995. Eppstein, D. ``Triangles and Simplices.''http://www.ics.uci.edu/~eppstein/junkyard/triangulation.html. Feuerbach, K. W. Eigenschaften einiger merkwürdingen Punkte des geradlinigen Dreiecks, und mehrerer durch die bestimmten Linien und Figuren. Nürnberg, Germany, 1822. Guy, R. K. ``Triangles with Integer Sides, Medians, and Area.'' §D21 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 188-190, 1994. Honsberger, R. Mathematical Gems III. Washington, DC: Math. Assoc. Amer., pp. 39-47, 1985. Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, 1929. Jordan, J. H.; Walch, R.; and Wisner, R. J. ``Triangles with Integer Sides.'' Amer. Math. Monthly 86, 686-689, 1979. Kimberling, C. ``Central Points and Central Lines in the Plane of a Triangle.'' Math. Mag. 67, 163-187, 1994. Kimberling, C. ``Triangle Centers and Central Triangles.'' Congr. Numer. 129, 1-295, 1998. Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 28, 1983. Schroeder. Das Dreieck und seine Beruhungskreise. Sloane, N. J. A. SequenceA005044/M0146in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. Vandeghen, A. ``Some Remarks on the Isogonal and Cevian Transforms. Alignments of Remarkable Points of a Triangle.'' Amer. Math. Monthly 72, 1091-1094, 1965. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。