请输入您要查询的字词:

 

单词 Twin Primes
释义

Twin Primes

Twin primes are Primes (, ) such that . The first few twin primes are for , 6, 12, 18, 30,42, 60, 72, 102, 108, 138, 150, 180, 192, 198, 228, 240, 270, 282, ... (Sloane's A014574). Explicitly, these are(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), ... (Sloane's A001359and A006512).


Let be the number of twin primes and such that . It is not known if there are an infinitenumber of such Primes (Shanks 1993), but all twin primes except (3, 5) are of the form . J. R. Chen has shownthere exists an Infinite number of Primes such that has at most two factors (Le Lionnais 1983, p. 49).Bruns proved that there exists a computable Integer such that if , then

(1)

(Ribenboim 1989, p. 201). It has been shown that
(2)

where has been reduced to (Fouvry and Iwaniec 1983), (Fouvry 1984),7 (Bombieri et al. 1986), 6.9075 (Fouvry and Grupp 1986), and 6.8354 (Wu 1990). The bound on is further reducedto 6.8325 (Haugland 1999). This calculation involved evaluation of 7-fold integrals andfitting of three different parameters. Hardy and Littlewood conjectured that (Ribenboim 1989, p. 202).


Define

(3)

If there are an infinite number of twin primes, then . The best upper limit to date is (Huxley 1973, 1977). The best previous values were 15/16 (Ricci), (Bombieri and Davenport1966), and (Pil'Tai 1972), as quoted in Le Lionnais (1983, p. 26).


Some large twin primes are , , and . Anup-to-date table of known twin primes with 2000 or more digits follows. An extensive list is maintained byCaldwell.


()DigitsReference
2003Atkin and Rickert 1984
2009Dubner, Atkin 1985
2151Dubner 1992
2259Dubner, Atkin 1985
2309Brown et al. 1989
2309Dubner 1989
2324Brown et al. 1989
2500Dubner 1991
2571Dubner 1993
3389Noll et al. 1989
3439Dubner 1993
4030Dubner 1993
4622Forbes 1995
4932Indlekofer and Ja'rai 1994
5129Dubner 1995
11713Indlekofer and Ja'rai 1995


The last of these is the largest known twin prime pair. In 1995, Nicely discovered a flaw in the IntelPentium microprocessor by computing the reciprocals of 824,633,702,441 and 824,633,702,443, which should have beenaccurate to 19 decimal places but were incorrect from the tenth decimal place on (Cipra 1995, 1996; Nicely 1996).


If , the Integers and form a pair of twin primes Iff

(4)

where is a pair of twin primes Iff
(5)

(Ribenboim 1989). The values of were found by Brent (1976) up to . T. Nicely calculated them upto in his calculation of Brun's Constant. The following table gives the number less than increasing powersof 10 (Sloane's A007508).

35
205
1224
8,169
58,980
440,312
3,424,506
27,412,679
224,376,048
1,870,585,220
15,834,664,872
135,780,321,665

See also Brun's Constant, de Polignac's Conjecture Prime Constellation, Sexy Primes, TwinPrime Conjecture, Twin Primes Constant


References

Bombieri, E. and Davenport, H. ``Small Differences Between Prime Numbers.'' Proc. Roy. Soc. Ser. A 293, 1-8, 1966.

Bombieri, E.; Friedlander, J. B.; and Iwaniec, H. ``Primes in Arithmetic Progression to Large Moduli.'' Acta Math. 156, 203-251, 1986.

Bradley, C. J. ``The Location of Twin Primes.'' Math. Gaz. 67, 292-294, 1983.

Brent, R. P. ``Irregularities in the Distribution of Primes and Twin Primes.'' Math. Comput. 29, 43-56, 1975.

Brent, R. P. ``UMT 4.'' Math. Comput. 29, 221, 1975.

Brent, R. P. ``Tables Concerning Irregularities in the Distribution of Primes and Twin Primes to .'' Math. Comput. 30, 379, 1976.

Caldwell, C. http://www.utm.edu/cgi-bin/caldwell/primes.cgi/twin.

Cipra, B. ``How Number Theory Got the Best of the Pentium Chip.'' Science 267, 175, 1995.

Cipra, B. ``Divide and Conquer.'' What's Happening in the Mathematical Sciences, 1995-1996, Vol. 3. Providence, RI: Amer. Math. Soc., pp. 38-47, 1996.

Fouvry, É. ``Autour du théorème de Bombieri-Vinogradov.'' Acta. Math. 152, 219-244, 1984.

Fouvry, É. and Grupp, F. ``On the Switching Principle in Sieve Theory.'' J. Reine Angew. Math. 370, 101-126, 1986.

Fouvey, É. and Iwaniec, H. ``Primes in Arithmetic Progression.'' Acta Arith. 42, 197-218, 1983.

Guy, R. K. ``Gaps between Primes. Twin Primes.'' §A8 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 19-23, 1994.

Haugland, J. K. Application of Sieve Methods to Prime Numbers. Ph.D. thesis. Oxford, England: Oxford University, 1999.

Huxley, M. N. ``Small Differences between Consecutive Primes.'' Mathematica 20, 229-232, 1973.

Huxley, M. N. ``Small Differences between Consecutive Primes. II.'' Mathematica 24, 142-152, 1977.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 1983.

Nicely, T. R. ``The Pentium Bug.'' http://lasi.lynchburg.edu/Nicely_T/public/pentbug/pentbug.htm.

Nicely, T. ``Enumeration to of the Twin Primes and Brun's Constant.'' Virginia J. Sci. 46, 195-204, 1996. http://lasi.lynchburg.edu/Nicely_T/public/twins/twins.htm.

Parady, B. K.; Smith, J. F.; and Zarantonello, S. E. ``Largest Known Twin Primes.'' Math. Comput. 55, 381-382, 1990.

Ribenboim, P. The Book of Prime Number Records, 2nd ed. New York: Springer-Verlag, pp. 199-204, 1989.

Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, p. 30, 1993.

Sloane, N. J. A. SequencesA014574,A001359/M2476,A006512/M3763, andA007508/M1855in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.

Weintraub, S. ``A Prime Gap of 864.'' J. Recr. Math. 25, 42-43, 1993.

Wu, J. ``Sur la suite des nombres premiers jumeaux.'' Acta. Arith. 55, 365-394, 1990.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/2/22 21:37:43