单词 | Pentagon | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 | Pentagon![]() The regular convex 5-gon is called the pentagon. By Similar Triangles in the figure on theleft,
![]()
![]() The coordinates of the Vertices relative to the center of the pentagon with unit sides are given asshown in the above figure, with
For a regular Polygon, the Circumradius, Inradius, Sagitta,and Area are given by
Plugging in ![]()
Five pentagons can be arranged around an identical pentagon to form the first iteration of the ``Pentaflake,''which itself has the shape of a pentagon with five triangular wedges removed. For a pentagon of side length 1,the first ring of pentagons has centers at radius ![]() In proposition IV.11, Euclid ![]() The following elegant construction for the pentagon is due to Richmond (1893). Given a point, a Circle may beconstructed of any desired Radius, and a Diameter drawn through the center. Call the center Madachy (1979) illustrates how to construct a pentagon by folding and knotting a strip of paper. See also Cyclic Pentagon, Decagon, Dissection, Five Disks Problem, Home Plate,Pentaflake, Pentagram, Polygon, Trigonometry Values Pi/5
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 95-96, 1987. Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New York: Wiley, pp. 26-28, 1969. De Temple, D. W. ``Carlyle Circles and the Lemoine Simplicity of Polygonal Constructions.'' Amer. Math. Monthly 98, 97-108, 1991. Dixon, R. Mathographics. New York: Dover, p. 17, 1991. Dudeney, H. E. Amusements in Mathematics. New York: Dover, p. 38, 1970. Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, p. 59, 1979. Pappas, T. ``The Pentagon, the Pentagram & the Golden Triangle.'' The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 188-189, 1989. Richmond, H. W. ``A Construction for a Regular Polygon of Seventeen Sides.'' Quart. J. Pure Appl. Math. 26, 206-207, 1893. Wantzel, M. L. ``Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle et le compas.'' J. Math. pures appliq. 1, 366-372, 1836. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。