请输入您要查询的字词:

 

单词 Kissing Number
释义

Kissing Number

The number of equivalent Hyperspheres in -D which can touch an equivalent Hyperspherewithout any intersections, also sometimes called the Newton Number, Contact Number, CoordinationNumber, or Newton correctly believed that the kissing number in 3-D was 12, but the firstproofs were not produced until the 19th century (Conway and Sloane 1993, p. 21) by Bender (1874), Hoppe (1874), andGünther (1875). More concise proofs were published by Schütte and van der Waerden (1953) and Leech (1956). Exactvalues for lattice packings are known for to 9 and (Conway and Sloane 1992, Sloane and Nebe).Odlyzko and Sloane (1979) found the exact value for 24-D.


The following table gives the largest known kissing numbers in Dimension for lattice () and nonlattice(NL) packings (if a nonlattice packing with higher number exists). In nonlattice packings, the kissing number mayvary from sphere to sphere, so the largest value is given below (Conway and Sloane 1993, p. 15). A more extensive andup-to-date tabulation is maintained by Sloane and Nebe.

NL NL
12 13
26 14
312 15 
424 16 
540 17 
672 18 
7126 19 
8240 20 
927221 
1022 
1123 
1224196,560 

The lattices having maximal packing numbers in 12- and 24-D have special names: the Coxeter-Todd Lattice andLeech Lattice, respectively. The general form of the lower bound of -D lattice densities given by


where is the Riemann Zeta Function, is known as the Minkowski-Hlawka Theorem.

See also Coxeter-Todd Lattice, Hermite Constants, Hypersphere Packing, Leech Lattice, Minkowski-Hlawka Theorem


References

Bender, C. ``Bestimmung der grössten Anzahl gleich Kugeln, welche sich auf eine Kugel von demselben Radius, wie die übrigen, auflegen lassen.'' Archiv Math. Physik (Grunert) 56, 302-306, 1874.

Conway, J. H. and Sloane, N. J. A. ``The Kissing Number Problem'' and ``Bounds on Kissing Numbers.'' §1.2 and Ch. 13 in Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, pp. 21-24 and 337-339, 1993.

Edel, Y.; Rains, E. M.; Sloane, N. J. A. ``On Kissing Numbers in Dimensions 32 to 128.'' Electronic J. Combinatorics 5, No. 1, R22, 1-5, 1998.http://www.combinatorics.org/Volume_5/v5i1toc.html.

Günther, S. ``Ein stereometrisches Problem.'' Archiv Math. Physik 57, 209-215, 1875.

Hoppe, R. ``Bemerkung der Redaction.'' Archiv Math. Physik. (Grunert) 56, 307-312, 1874.

Kuperberg, G. ``Average Kissing Numbers for Sphere Packings.'' Preprint.

Kuperberg, G. and Schramm, O. ``Average Kissing Numbers for Non-Congruent Sphere Packings.'' Math. Res. Let. 1, 339-344, 1994.

Leech, J. ``The Problem of Thirteen Spheres.'' Math. Gaz. 40, 22-23, 1956.

Odlyzko, A. M. and Sloane, N. J. A. ``New Bounds on the Number of Unit Spheres that Can Touch a Unit Sphere in Dimensions.'' J. Combin. Th. A 26, 210-214, 1979.

Schütte, K. and van der Waerden, B. L. ``Das Problem der dreizehn Kugeln.'' Math. Ann. 125, 325-334, 1953.

Sloane, N. J. A. SequenceA001116/M1585in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.

Sloane, N. J. A. and Nebe, G. ``Table of Highest Kissing Numbers Presently Known.'' http://www.research.att.com/~njas/lattices/kiss.html.

Stewart, I. The Problems of Mathematics, 2nd ed. Oxford, England: Oxford University Press, pp. 82-84, 1987.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2024/11/14 14:57:30