Ingham InequalityLet (tj)j∈ℤ a increasing sequence of positive real numbers such thattj+1-tj≥γ>1,j∈ℤ.Then for all n∈ℕ and for all complex sequences (cj)j=-nn, we havem∑j=-nn|cj|2≤∫-ππ|∑j=-nn12πcjeitjx|2𝑑x,wherem=2π(1-1γ2).