请输入您要查询的字词:

 

单词 MyhillNerodeTheorem
释义

Myhill-Nerode theorem


Let L be a languagePlanetmathPlanetmath on the finite alphabet Aand let 𝒩L be its Nerode equivalence.The following are equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath.

  1. 1.

    L is recognized by a deterministic finite automaton.

  2. 2.

    A/𝒩L is finite.

Moreover, the number of classes of 𝒩Lis the smallest number of states of a DFA recognizing L.

Proof.First, supposeA/𝒩L={q0=[λ]𝒩L,,qk-1}=Q,where λ is the empty wordPlanetmathPlanetmathPlanetmath on A.Construct a DFA 𝒜=Q,A,q0,δ,F(called the Nerode automaton for L)with δ:Q×AQ defined by

δ(q,a)=[wa]𝒩L,wq,(1)

and

F={qQwLwq}.(2)

Then δ is well definedbecause w1𝒩Lw2 implies w1u𝒩Lw2u.It is also straightforward that 𝒜 recognizes L.

On the other hand,let 𝒜=Q,A,q0,δ,Fbe a DFA that recognizes L.Extend δ to Q×A by puttingδ(q,λ)=q andδ(q,aw)=δ(δ(q,a),w)for every qQ, aA, wA.Define f:QA/𝒩L{} as

f(q)={[w]𝒩Lifδ(q0,w)=qifδ(q0,w)qwA(3)

Then f is well defined.In fact, suppose q1=q2=q:then either f(q1)=f(q2)=,or there are w1,w2A such that δ(q0,w1)=δ(q0,w2)=q.But in the latter case, δ(q0,w1u)=δ(q0,w2u)=δ(q,u)for any uA,hence w1𝒩Lw2 since 𝒜 recognizes L.Finally, for any wA we have[w]𝒩L=f(δ(q0,w)),so every class of 𝒩L has a preimageMathworldPlanetmath according to f;consequently, |Q||A/𝒩L|.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 16:48:41