请输入您要查询的字词:

 

单词 ParityOftauFunction
释义

parity of τ function


If the prime factorMathworldPlanetmath decomposition of a positive integer n is

n=p1α1p2α2prαr,(1)

then all positive divisorsMathworldPlanetmathPlanetmath of n are of the form

p1ν1p2ν2prνrwhere0νiαi(i=1, 2,,r).

Thus the total number of the divisors is

τ(n)=(α1+1)(α2+1)(αr+1).(2)

From this we see that in to τ(n) be an odd numberMathworldPlanetmathPlanetmath, every sum αi+1 shall be odd, i.e. every exponentPlanetmathPlanetmath αi in (1) must be even.  It means that n has an even number of each of its prime divisors pi; so n is a square of an integer, a perfect squareMathworldPlanetmath.

Consequently, the number of all positive divisors of an integer is always even, except if the integer is a perfect square.

Examples.  15 has four positive divisors 1, 3, 5, 15 and the square number 16 five divisors
1, 2, 4, 8, 16.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/3 15:29:51