请输入您要查询的字词:

 

单词 ProofOfFatouLebesgueTheorem
释义

proof of Fatou-Lebesgue theorem


Since |g𝑑μ||g|𝑑μΦ𝑑μ<, we have that g𝑑μ>-. Similarly, h𝑑μ<.

The inequalityMathworldPlanetmath lim infnfn𝑑μlim supnfn𝑑μ is obvious by definition of lim inf and lim sup.

Define a sequence of functions kn:X by kn(x)=fn(x)+Φ(x). Then each kn is nonnegative (since -fn|fn|Φ) and integrable (since kn|fn|+Φ2Φ), as is k:=lim infnkn. Fatou’s lemma yields that k𝑑μlim infnkn𝑑μ. Thus:

g𝑑μ+Φ𝑑μ=(g+Φ)𝑑μ=k𝑑μlim infnkn𝑑μ=lim infn(fn+Φ)𝑑μ=lim infn(fn𝑑μ+Φ𝑑μ)=lim infnfn𝑑μ+lim infnΦ𝑑μ=lim infnfn𝑑μ+Φ𝑑μ

Since Φ𝑑μ<, it follows that g𝑑μlim infnfn𝑑μ.

Note that |-fn|=|fn|Φ. Thus,

Hence, lim supnfn𝑑μh𝑑μ. It follows that -<g𝑑μlim infnfn𝑑μlim supnfn𝑑μh𝑑μ<.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 19:49:43