请输入您要查询的字词:

 

单词 SplittingFieldOfAFiniteSetOfPolynomials
释义

splitting field of a finite set of polynomials


Lemma 1.

(Cauchy,Kronecker) Let K be a field. For any irreducible polynomialMathworldPlanetmath f in K[X] there is an extension fieldMathworldPlanetmath of K in which f has a root.

Proof.

If I is the ideal generated by f in K[X], since f is irreduciblePlanetmathPlanetmath, I is a maximal idealMathworldPlanetmath of K[X], and consequently K[X]/I is a field.
We can construct a canonical monomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath v from K to K[X]. By tracking back the field operation on K[X]/I, v can be extended to an isomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmath w from an extension field L of K to K[X]/I.
We show that α=w-1(X+I) is a root of f.
If we write f=i=1nfiXi then f+I=0 implies:

w(f(α))=w(i=1nfiαi)
=i=1nw(fi)w(α)i
=i=1nv(fi)w(α)i
=i=1n(fi+I)(X+I)i
=(i=1nfiXi)+I
=f+I=0,

which means that f(α)=0.∎

Theorem 1.

Let K be a field and let M be a finite set of nonconstant polynomialsMathworldPlanetmathPlanetmathPlanetmath in K[X]. Then there exists an extension field L of K such that every polynomial in M splits in L[X]

Proof.

If L is a field extension of K then the nonconstant polynomials f1,f2,,fn split in L[X] iff the polynomial i=1nfi splits in L[X]. Now the proof easily follows from the above lemma.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 14:16:31