请输入您要查询的字词:

 

单词 SierpinskiConjecture
释义

Sierpiński conjecture


In 1960 Wacław Sierpiński (1882-1969) proved the following interesting result:

Theorem:There exist infinitely many odd integers k such thatk2n+1 is composite for every integer n1.

A multiplier k with this propertyis called a Sierpiński number (http://planetmath.org/SierpinskiNumbers).The Sierpiński problem consists indetermining the smallest Sierpiński number.In 1962, John Selfridge discovered the Sierpiński number k=78557,which is now believed to be in fact the smallest such number.

Conjecture:The integer k=78557 is the smallest Sierpiński number.

To prove the conjecture, it would be sufficient to exhibita prime k2n+1 for each k<78557.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 5:04:11