请输入您要查询的字词:

 

单词 TheOddBernoulliNumbersAreZero
释义

the odd Bernoulli numbers are zero


Recall that, for k0, the Bernoulli numbersMathworldPlanetmathPlanetmath Bk are defined as the coefficients in the Taylor expansionMathworldPlanetmath:

tet-1=k0Bktkk!.(1)

Just to name a few:

B0=1,B1=-12,B2=16,B3=0,B4=-130,B5=0,,B10=566,
Lemma.

If k3 is odd then Bk=0.

Proof.

From the right hand side of (1) we extract the term corresponding to k=1:

tet-1=-t2+k0,k1Bktkk!.(2)

Thus:

tet-1+t2=k0,k1Bktkk!(3)

and the left hand side can be rewritten as:

tet-1+t2=2t+t(et-1)2(et-1)=t2et+1et-1=t2et/2+e-t/2et/2-e-t/2.(4)

Hence, if one replaces t by -t then (4) is unchanged. Since (4) is the left hand side of (3), the quantity

k0,k1Bktkk!

is also unchanged when t is exchanged by -t, and so we must have Bk=(-1)kBk for k1. We conclude that if k3 and k is odd, Bk=0.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 3:53:52