classical differential geometry
Curves in
- •
inflexion point
- •
singular points of plane curve
- •
isocline
- •
curvature
(plane curve
)
- •
circle of curvature
- •
curvature determines the curve
- •
curvature of Nielsen’s spiral
- •
osculating curve
- •
orthogonal curves
- •
isogonal trajectory
- •
parallel curves
- •
properties of parallel curves
- •
evolute
- •
evolute of cycloid
- •
Serret-Frenet equations in (http://planetmath.org/SerretFrenetEquationsInMathbbR2)
- •
famous curves in the plane
- •
arc-parametrizations
- •
envelope
- •
determining envelope
- •
catacaustic
Curves in
- •
Serret-Frenet equations in (http://planetmath.org/SerretFrenetFormulas)
- •
space curve
- •
level curve
- •
curvature (http://planetmath.org/CurvatureOfACurve) and torsion
(http://planetmath.org/Torsion) of a space curve
- •
moving trihedron
Surfaces in
- •
level curve, level surface
- •
surface of revolution
- •
surface normal
- •
normal section
- •
normal curvatures
- •
Meusnier’s theorem
- •
mean curvature at surface point
- •
first fundamental form
(http://planetmath.org/FirstFundamentalForm)
- •
second fundamental form
- •
sphere map and shape operator
- •
Gaussian curvature
and mean curvature
- •
geodesic
- •
Gauss-Bonnet theorem
- •
standard connection in
- •
Gauss equation
The space
- •
ortho-normal frame fields in (or non constant ortho-normal triples of vector fields)
- •
rate of rotation of an o.f.f.
- •
euclidean spin connection
- •
Cartan structural equations I, II
Variational calculus
- •
calculus of variations
- •
classical isoperimetric problem
- •
least surface of revolution
- •
brachistochrone curve
- •
equation of catenary via calculus of variations