请输入您要查询的字词:

 

单词 EveryepsilonautomatonIsEquivalentToAnAutomaton
释义

every ϵ-automaton is equivalent to an automaton


In this entry, we show that an automaton with ϵ-transitions (http://planetmath.org/EpsilonTransition) is no more power than one without. Having ϵ-transitions is purely a matter of convenience.

Proposition 1.

Every ϵ-automaton (http://planetmath.org/EpsilonAutomaton) is equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath to an automaton.

For the proof, we use the following setup (see the parent entry for more detail):

  • E=(S,Σ,δ,I,F,ϵ) is an ϵ-automaton, and Eϵ is the automaton associated with E,

  • h:(Σ{ϵ})*Σ* is the homomorphismPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath that erases ϵ (it takes ϵ to the empty wordPlanetmathPlanetmathPlanetmath, also denoted by ϵ). From the parent entry, L(E):=h(L(Eϵ)).

Proof.

Define a function δ1:S×ΣP(S), as follows: for each pair (s,a)S×Σ, let

δ1(s,a)={δ(s,u)h(u)=a}.

In other words, δ1(s,a) is the set of all states reachablePlanetmathPlanetmath from s by words of the form ϵmaϵn. As usual, we extend δ1 so its domain is S×Σ*. By abuse of notation, we use δ1 again for this extensionPlanetmathPlanetmathPlanetmath. First, we set δ1(s,ϵ):={s}. Then we inductively define δ1(s,ua)=δ1(δ1(s,u),a). Using inductionMathworldPlanetmath,

δ1(s,ua)=δ1(δ1(s,u),a)
=δ1(h(v)=uδ(s,v),a)
=h(v)=uδ1(δ(s,v),a)
=h(v)=utδ(s,v)δ1(t,a)
=h(v)=utδ(s,v)h(w)=aδ(t,w)
=h(v)=uh(w)=atδ(s,v)δ(t,w)
=h(v)=uh(w)=aδ(δ(s,v),w)
=h(v)=uh(w)=aδ(s,vw)
={δ(s,vw)h(v)=u and h(w)=a}
={δ(s,x)h(x)=ua}

So for any non-empty word u, we have the following equation:

δ1(s,u)={δ(s,v)h(v)=u}.(1)

In other words, if u=a1a2an, then δ1(s,u) is the set of all states reachable from s by words of the form

ϵi0a1ϵi1a2ϵi2ϵin-1anϵin.(2)

Now, define A to be the automaton (S,Σ,δ1,I,F). Then, from equation (1) above, a word

u=a1a2an

is accepted by A iff some word v of the form (2) is accepted by Eϵ iff u=h(v) is accepted by E, proving the propositionPlanetmathPlanetmath.∎

Remark. Another approach is to use the conceptMathworldPlanetmath of ϵ-closureMathworldPlanetmath (http://planetmath.org/EpsilonClosure). The proof is very similar to the one given above, and the resulting equivalent automaton is a DFA.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 23:40:42