请输入您要查询的字词:

 

单词 FundamentalHomomorphismTheorem
释义

fundamental homomorphism theorem


The following theorem is also true for rings (with ideals instead of normal subgroupsMathworldPlanetmath) or modules (with submodulesMathworldPlanetmath instead of normal subgroups).

theorem 1.

Let G,H be groups, f:GH a homomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath, and let N be a normal subgroup of G contained in ker(f). Then there exists a unique homomorphism h:G/NH so that hφ=f, where φ denotes the canonical homomorphism from G to G/N.

Furthermore, if f is onto, then so is h; and if ker(f)=N, then h is injectivePlanetmathPlanetmath.

Proof.

We’ll first show the uniqueness. Let h1,h2:G/NH functions such that h1φ=h2φ. For an element y in G/N there exists an element x in G such that φ(x)=y, so we have

h1(y)=(h1φ)(x)=(h2φ)(x)=h2(y)

for all yG/N, thus h1=h2.

Now we define h:G/NH,h(gN)=f(g)gG. We must check that the definition is of the given representative; so let gN=kN, or kgN. Since N is a subset of ker(f), g-1kN implies g-1kker(f), hence f(g)=f(k). Clearly hφ=f.

Since xker(f) if and only if h(xN)=1H, we have

ker(h)={xNxker(f)}=ker(f)/N.

A consequence of this is: If f:GH is onto with ker(f)=N, then G/N and H are isomorphic.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/24 22:28:56