单词 | Rabin-Miller Strong Pseudoprime Test |
释义 | Rabin-Miller Strong Pseudoprime TestA Primality Test which provides an efficient probabilistic Algorithm for determining if a given number isPrime. It is based on the properties of Strong Pseudoprimes. Given an OddInteger The test is very fast and requires no more than The Rabin-Miller test (combined with a Lucas Pseudoprime test) is the Primality Test used byMathematica
Arnault, F. ``Rabin-Miller Primality Test: Composite Numbers Which Pass It.'' Math. Comput. 64, 355-361, 1995. Miller, G. ``Riemann's Hypothesis and Tests for Primality.'' J. Comp. Syst. Sci. 13, 300-317, 1976. Monier, L. ``Evaluation and Comparison of Two Efficient Probabilistic Primality Testing Algorithms.'' Theor. Comput. Sci. 12, 97-108, 1980. Rabin, M. O. ``Probabilistic Algorithm for Testing Primality.'' J. Number Th. 12, 128-138, 1980. Wagon, S. Mathematica in Action. New York: W. H. Freeman, pp. 15-17, 1991. |
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。