请输入您要查询的字词:

 

单词 ProofOfFermatsLittleTheoremUsingLagrangesTheorem
释义

proof of Fermat’s little theorem using Lagrange’s theorem


Theorem.

If a,pZ with p a prime and pa, then ap-11(modp).

Proof.

We will make use of Lagrange’s Theorem: Let G be a finite groupMathworldPlanetmath and let H be a subgroupMathworldPlanetmathPlanetmath of G. Then the order of H divides the order of G.

Let G=(/p)× and let H be the multiplicative subgroup of G generated by a (so H={1,a,a2,}). Notice that the order of H, h=|H| is also the order of a, i.e. the smallest natural numberMathworldPlanetmath n>1 such that an is the identityPlanetmathPlanetmathPlanetmath in G, i.e. ah1modp.

By Lagrange’s theorem h|G|=p-1, so p-1=hm for some m. Thus:

ap-1=(ah)m1m1modp

as claimed.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 16:21:13