请输入您要查询的字词:

 

单词 SparselyTotientNumber
释义

sparsely totient number


A sparsely totient number is the largest integer with a given totient. That is, given an sparsely totient number n, the inequality ϕ(m)>ϕ(n) (with ϕ(x) being Euler’s totient function) is true for any m>n. For example, ϕ(12)=4. We can then verify that ϕ(13)=12, ϕ(14)=6 and ϕ(15)=8. Accepting as true that the inequality ϕ(n)>n holds for all n>6, we don’t need to check any larger numbers to confirm that 12 is the largest integer with 4 as its totient.

The first few sparsely totient numbers are 2, 6, 12, 18, 30, 42, 60, 66, 90, 120, 126, 150, 210, 240, 270, 330, 420, 462, 510, 630, 660, 690, 840, 870, etc., listed in A036913 of Sloane’s OEIS.

All sparsely totient numbers are even. In 1986, Masser and Shiu proved that the ith primorial multiplied by the ith prime (for i>1, thus: 18, 150, 1470, 25410, 390390, etc.) is a sparsely totient number.

References

  • 1 Roger C. Baker & Glyn Harman, “Sparsely totient numbers,” Annales de la faculte des sciences de Toulouse Ser. 6 5 no. 2 (1996): 183 - 190
  • 2 D. W. Masser & P. Shiu, “On sparsely totient numbers,” Pacific J. Math. 121, no. 2 (1986): 407 - 426.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 18:52:54