单词 | Peano Arithmetic |
释义 | Peano ArithmeticThe theory of Natural Numbers defined by the five Peano's Axioms. Any universalstatement which is undecidable in Peano arithmetic is necessarily True. Undecidable statements may be eitherTrue or False. Paris and Harrington (1977) gave the first ``natural'' example of a statementwhich is true for the integers but unprovable in Peano arithmetic (Spencer 1983). See also Kreisel Conjecture, Natural Independence Phenomenon, Number Theory, Peano's Axioms
Kirby, L. and Paris, J. ``Accessible Independence Results for Peano Arithmetic.'' Bull. London Math. Soc. 14, 285-293, 1982. Paris, J. and Harrington, L. ``A Mathematical Incompleteness in Peano Arithmetic.'' In Handbook of Mathematical Logic (Ed. J. Barwise). Amsterdam, Netherlands: North-Holland, pp. 1133-1142, 1977. Spencer, J. ``Large Numbers and Unprovable Theorems.'' Amer. Math. Monthly 90, 669-675, 1983. |
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。