单词 | 含有n个未知量n个方程的线性方程组解法 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 | §3 线性方程组一、含n个未知量n个方程的线性方程组的解法[齐次和非齐次线性方程组] 含n个未知量n个方程的线性方程组取如下形式: 当常数项b1,b2,...,bn不全为零时,(1)称为非齐次线性方程组;当b1,b2,...,bn全为零时,(1)称为齐次线性方程组. 如果记 A=(aij)= x=(x1,x2,...,xn)t b=(b1,b2,...,bn)t (常数项矢量) 式中t表示转置,那末线性方程组(1)可写成矩阵形式 Ax=b (2) [逆矩阵法] 当ïAï ≠0时,线性方程组(2)的解为 x= 式中 [克莱姆法则] 若ïAï ≠0,则方程组(1)的解为
式中
这里Dj(j=1,2,...,n)是以常数项矢量b替换A中第j列矢量后得到的n阶行列式.特别 1° 二阶线性方程组 的解为
式中
2° 三阶线性方程组 的解为
式中
[有回代过程的主元素消去法(高斯消去法)] 对于n阶线性方程组 可用矩阵表成 消元步骤: (1)在系数矩阵中找出绝对值最大的元素(这元素称为主元素),不妨设a11(第1行第1列元素)为主元素,(不然,如果 (2)在除第1行外的系数矩阵中找出主元素,不妨设b22为主元素.再将第二个方程乘以 (3)按照(1),(2)的方法进行n 中找出主元素,不妨设 这样做完n 回代步骤: 由第n个方程解出 将xn代入第n 注意,这里每当找出主元素后,都经过行与行互换和未知数次序调换等手续,也可以把调换未知数次序的步骤放到第n-1步之后一起去做,同样可以得到三角形的系数矩阵. 例1 用主元素消去法解方程组 解 方程组用矩阵表示为: 解的步骤如下: (1)第2 行第1列的元素-23是主元素,用□框起来,并用矩阵表示成 把矩阵第2行乘以 在除第2行外的系数矩阵中找到第二个主元素在第1行第2列上为 (2)把第1行乘以 (3)由第三个方程解出 于是方程组的解为(1,2,1). [无回代过程的主元素消去法] 这种方法与上法基本一样,不同之处在于每次消元时,都用某一方程去消去其余所有n-1个方程的未知数,例如上面方法的消元步骤(2)中,改成将第二个方程乘以 而最后得到对角系数矩阵是: 因此不需经过回代过程,即可直接解出各个未知数来. 无回代过程的主元素消去法运算量比有回代过程的大,但在电子计算机上编制程序较为简单. 为了减少运算量,便于编制程序,第一步可在系数矩阵的第1列找出绝对值最大的元素为列主元素,消元后,第二步从系数矩阵的第2列找出列主元素进行消元,等等.这种消元法称为列主元素消去法,它也可达到较好的精确度. [简单迭代法] 一般步骤: (1) 将线性方程组 改写成 (2)任意选取一组初始近似值 (3)依次使k=1,2,3,...,用公式 求出方程的第k次近似解,直至满足 为止,式中e>0为预先给定的允许误差.于是第k次近似解
的解,其允许误差 解 根据例1可化为方程组 分别由 选取初始值
迭代19次后得到 [赛得尔迭代法] 把简单迭代法的步骤(3)中的迭代公式改成 其他步骤同简单迭代法. 在一般情况下,赛得尔迭代法比简单迭代法收敛得快些.
解 选取初始值 再将 再将 再将 即解方程 得出
[迭代法的收敛条件与误差估计]
[松弛迭代法] 把简单迭代法的迭代公式改成 其他步骤同简单迭代法.上式中w 是常数,称为松弛因子.适当选取w 可以提高收敛速度,通常w 取为1.5~2(当取w Î (1,2)时,称为超松弛迭代法,当取wÎ (0,1)时,称为低松弛迭代法). [共轭斜量法] 线性方程组 Ax=b 可按下面步骤解出: (1)首先选取适当的近似解为初始值: (2)计算初次残差矢量 r(0)=b-Ax(0) 和矢量 p(0)=At r(0) 式中At 为A的转置矩阵. (3)对i=0,1,2,...,N-1,依次按下列公式迭代 x(i+1)=x(i)+aip(i) r(i+1)=r(i)-aiAp(i) p(i+1)=At r(i+1)+b i+1p(i) 式中(a,b)表示矢量a和b的内积(见第八章). 这一过程只要进行到r(N)足够小即可停止. [追赶法解实三对角线性方程组] 实三对角线性方程组
可按下面步骤解出: 首先计算
再对k=2,3,...,n-1,依次按下列公式迭代 最后得到线性方程组的解为
解 按上述公式依次计算得到
[平方根法解正定矩阵的线性方程组] 设A为正定矩阵,则线性方程组 Ax=b 可按下面步骤解出: (1)计算lij(分解A=LLt ,L=(lij)为实非奇异下三角形矩阵) 式中n为矩阵A的阶数. (2)计算yi(解方程组Ly=b) (3)计算xi(解方程组Lt x=y) [正定带型矩阵的线性方程组解法] 设A=(aij)为一正定带型矩阵,满足 aij=0, ï i-jï >m (m为正整数) 则线性方程组 Ax=b 可按下面步骤解出: (1) 计算l ij.为了节省存储单元,充分利用矩阵的对称和带型特点,只需存储对角线和对角线下的带中元素,这时可以改变aij的下标,令 aij=ai,m-i+j 例如当n=4,m=2的对称带型矩阵的存储格式为 然后按下列公式计算l ij: 当i≤m时, 当i>m时, (2)计算yi. 令 lij=l i,m-i+j 且按下列公式计算yi: (3)计算xi. 这方法只有当m远小于n时才显示出优越性,否则选用其他方法.本公式利用了矩阵的对称性与带型特点,便于在电子计算机上存储,并进行计算. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
数学辞典收录了524条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。