单词 | 极小化序列与里兹方法 |
释义 | 3. 极小化序列与里兹方法 在处理变分问题中,极小化序列起着重要的作用.考虑泛函 F(u)=(Au,u)-2(f,u) 以d表示泛函的极小值.设在希尔伯特空间中存在一列元素{un} (n=1,2 则称{un}为极小化序列. 定理 若算子A是正定的,则F(u)的每一个极小化序列既按H空间的模也按H0的模收敛于使泛函F(u)取极小的元素. 这个定理不但指出利用极小化序列可求问题的解,而且提供一种近似解的求法,即把极小化序列中的每一个元素当作问题的近似解. 设算子A是正定的,构造极小化序列的里兹方法的主要步骤是: (1) 在线性集合MA中选取H0中完备的元素序列{i} , (i=1,2 (2) 令 (3) 为使函数F(un)取极小,必须 |
随便看 |
数学辞典收录了524条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。