5. 实数进位制
[进位制的基与数字] 任一正数可表为通常意义下的有限小数或无限小数,各数字的值与数字所在的位置有关,任何位置的数字当小数点向右移一位时其值扩大10倍,当小数点向左移一位时其值缩小10倍.例如

一般地,任一正数a可表为

这就是10进数,记作a(10),数10称为进位制的基,式中ai在{0,1,2,L,9}中取值,称为10进数的数字,显然没有理由说进位制的基不可以取其他的数.现在取q为任意大于1的正整数当作进位制的基,于是就得到q进数表示
(1)
式中数字ai在{0,1,2,L,q-1}中取值,anan-1La1a0称为q进数a(q)的整数部分,记作[a(q)];
a-1a-2L称为a(q)的分数部分,记作{a(q)}.常用进位制,除10进制外,还有2进制、8进制、16进制等,其数字如下
2进制 0, 1
8进制 0, 1, 2, 3, 4, 5, 6, 7
16进制 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

[2,8,16进制的加法与乘法表]
2进制加法表 | | 2进制乘法表 |
+ | 0 | 1 | |  | 0 | 1 |
0 | 0 | 1 | | 0 | 0 | 0 |
1 | 1 | 10 | | 1 | 0 | 1 |
8进制加法表
+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
0 | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 |
1 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 10 |
2 | 02 | 03 | 04 | 05 | 06 | 07 | 10 | 11 |
3 | 03 | 04 | 05 | 06 | 07 | 10 | 11 | 12 |
4 | 04 | 05 | 06 | 07 | 10 | 11 | 12 | 13 |
5 | 05 | 06 | 07 | 10 | 11 | 12 | 13 | 14 |
6 | 06 | 07 | 10 | 11 | 12 | 13 | 14 | 15 |
7 | 07 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
8进制乘法表
 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
0 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
1 | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 |
2 | 00 | 02 | 04 | 06 | 10 | 12 | 14 | 16 |
3 | 00 | 03 | 06 | 11 | 14 | 17 | 22 | 25 |
4 | 00 | 04 | 10 | 14 | 20 | 24 | 30 | 34 |
5 | 00 | 05 | 12 | 17 | 24 | 31 | 36 | 43 |
6 | 00 | 06 | 14 | 22 | 30 | 36 | 44 | 52 |
7 | 00 | 07 | 16 | 25 | 34 | 43 | 52 | 61 |
16进制加法表
+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |  |  |  |  |  |
0 | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 |  |  |  |  |  |  |
1 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 |  | 0 |  |  |  |  | 10 |
2 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 |  |  |  |  |  |  | 10 | 11 |
3 | 03 | 04 | 05 | 06 | 07 | 08 | 09 |  |  |  |  |  |  | 10 | 11 | 12 |
4 | 04 | 05 | 06 | 07 | 08 | 09 |  |  |  |  |  |  | 10 | 11 | 12 | 13 |
16进制加法表
5 | 05 | 06 | 07 | 08 | 09 |  |  |  |  |  |  | 10 | 11 | 12 | 13 | 14 |
6 | 06 | 07 | 08 | 09 |  |  |  |  |  |  | 10 | 11 | 12 | 13 | 14 | 15 |
7 | 07 | 08 | 09 |  |  |  |  |  |  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
8 | 08 | 09 |  |  |  |  |  |  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
9 | 09 |  |  |  |  |  |  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
 |  |  |  |  |  |  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
 |  |  |  |  |  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |  |
 |  |  |  |  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |  |  |
 |  |  |  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |  |  |  |
 |  |  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |  |  |  |  |
 |  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |  |  |  |  |  |
16进制乘法表
+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |  |  |  |  |  |
0 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
1 | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 |  |  |  |  |  |  |
2 | 00 | 02 | 04 | 06 | 08 |  |  |  | 10 | 12 | 14 | 16 | 18 |  |  |  |
3 | 00 | 03 | 06 | 09 |  |  | 12 | 15 | 18 |  |  | 21 | 24 | 27 |  |  |
4 | 00 | 04 | 08 |  | 10 | 14 | 18 |  | 20 | 24 | 28 |  | 30 | 34 | 38 |  |
5 | 00 | 05 |  |  | 14 | 19 |  | 23 | 28 |  | 32 | 37 |  | 41 | 46 |  |
6 | 00 | 06 |  | 12 | 18 |  | 24 |  | 30 | 36 |  | 42 | 48 |  | 54 |  |
7 | 00 | 07 |  | 15 |  | 23 |  | 31 | 38 |  | 46 |  | 54 |  | 62 | 69 |
8 | 00 | 08 | 10 | 18 | 20 | 28 | 30 | 38 | 40 | 48 | 50 | 58 | 60 | 68 | 70 | 78 |
9 | 00 | 09 | 12 |  | 24 |  | 36 |  | 48 | 51 |  | 63 |  | 75 |  | 87 |
 | 00 |  | 14 |  | 28 | 32 |  | 46 | 50 |  | 64 |  | 78 | 82 |  | 96 |
 | 00 |  | 16 | 21 |  | 37 | 42 |  | 58 | 63 |  | 79 | 84 |  |  |  |
 | 00 |  | 18 | 24 | 30 |  | 48 | 54 | 60 |  | 78 | 84 | 90 |  |  |  |
 | 00 |  |  | 27 | 34 | 41 |  |  | 68 | 75 | 82 |  |  |  |  |  |
 | 00 |  |  |  | 38 | 46 | 54 | 62 | 70 |  |  |  |  |  |  |  |
 | 00 |  |  |  |  |  |  | 69 | 78 | 87 | 96 |  |  |  |  |  |
[8-2,16-2数字转换表]
8进数 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
2进数 | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
16进数 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
2进数 | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |
16进数 | 8 | 9 |  |  |  |  |  |  |
2进数 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
[各种进位制的相互转换]
1° q→10转换 适用通常的10进数四则运算规则,根据公式(1),可以把q进数a(q)转换为10进数表示.例如

2° 10→q转换 转换时必须分为整数部分和分数部分进行.
对于整数部分其步骤是:
(1) 用q去除[a(10)],得到商和余数.
(2) 记下余数作为q进数的最后一个数字.
(3) 用商替换[a(10)]的位置重复(1)和(2)两步,直到商等于零为止.
对于分数部分其步骤是:
(1)用q去乘{a(10)}.
(2)记下乘积的整数部分作为q进数的分数部分第一个数字.
(3)用乘积的分数部分替换{a(10)}的位置,重复(1)和(2)两步,直到乘积变为整数为止,或直到所需要的位数为止.例如:
103.118(10)=147.074324L(8)
整数部分的草式 | 分数部分的草式 |
 |  |
3° p→q转换 通常情况下其步骤是:a(p)→a(10)→a(q).如果p,q是同一数s的不同次幂,其步骤是:a(p)→a(s)→a(q).例如,8进数127.653(8)转换为16进数时,由于8=23,16=24,所以s=2,其步骤是:首先把8进数的每个数字根据8-2转换表转换为2进数(三位一组)
127.653(8)=001 010111.110 101 011(2)
然后把2进数的所有数字从小数点起(左和右)每四位一组分组,从16-2转换表中逐个记下对应的16进数的数字,即
