单词 | 变号级数收敛判别法 |
释义 | 3. 变号级数收敛判别法 [级数的绝对收敛性] 若级数
收敛,则变号级数(即正负项可以任意出现的级数)
也收敛,并称级数(4)为绝对收敛. 若级数(4)收敛,而级数(3)发散,则称(4)为条件收敛(非绝对收敛). 要确定级数 绝对收敛级数的和等于级数的所有正项组成的级数的和减去级数所有负项的绝对值组成的级数的和. [黎曼定理] 设 [达兰贝尔判别法] 若变号级数
则当l<1时, [莱布尼茨判别法] 若交错级数 满足条件:(i)cn≥cn+1(n=1,2,…),(ii) 有以下估计: 而且余项的符号与其第一项的符号相同,其绝对值比第一项绝对值小. [狄利克莱判别法] 若部分和An= [阿贝耳判别法] 若级数 |bn|≤K (n=1,2,…) 则级数 |
随便看 |
数学辞典收录了524条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。