单词 | 变换、集的一般表示法、标号集 |
释义 | 二、 二、 变换·集的一般表示法·标号集 [有序对] 假定x和y都是事物,那末 <x,y> = {{x,1},{y,2}} 称为由x和y结成的有序对,x和y分别称为<x,y>的第一坐标和第二坐标. 有序对是针对无序对说的.可以看到<x',y'>=<x,y>的充分必要条件是:x'=x且y'=y,而无序对跟元素先后次序无关. [替换公理] 假定X是一个集,如果对每个x 把每个<x,y>看作有序对<x,<x,y>>的第二坐标,再一次应用替换公理,就可看到所有这种有序对<x,y>的全体也是一个集. [变换(映射)·象源(原象)·象] 假定X是一个集,如果对每个x 一般,假定<x,y> y = f(x) x称为在变换f下y的象源,y称为在变换f下x的象. [一对一变换与逆变换] 由定义,一个变换的每个象源都只有一个象(单值性),但是一个象不一定只有一个象源.如果特别每个象也都只有一个象源,那末称f是一对一的变换.在一个一对一变换f下,可以得到一个把Y变上X的变换 [集的一般表示法与标号集] 假定有一个一对一的变换把一个集H变上X,那末X是一个集,如果把每个象源h( X ={ xh |h 那末H称为X的标号集,每个h称为xh的标号. 反过来,一个集总有标号集的.因为至少它自己就可以看作自己的标号集.因此(1)式这种表示法是普遍适用的.以后应用这种记号的时候不一定再说明H是标号集,只要规定这种记号里写在H位置上的必定是标号集. |
随便看 |
数学辞典收录了524条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。