单词 | 极限与连续 |
释义 | 四、 四、 极限与连续 [变换的极限] 假定f是把一个拓扑空间X里的一个点集A变进另一个拓扑空间Y的变换.又假定x0是A的一个聚点.如果Y里有一点y0,对y0的任何一个邻域V,x0有一个邻域G,使 f((G\\{ x0})∩A) 那末称y0为f在x0的极限,记作 注意,1o假定y0是f在点x0 2o一般, [连续变换] 假定f是把一个拓扑空间里的点集A变进一个拓扑空间的变换.假定x0是A的孤立点或者x0是A的聚点而 如果f(x)在每一点x 定理 把拓扑空间里的一个点集A变进一个拓扑空间的变换f是A的连续变换的充分必要条件是:f(A)的任何一个相对开集的象源(就是这个相对开集里每一点的象源的全体)是A的相对开集(条件中的“开”可以改成“闭”). [使一个变换连续的最粗的拓扑] 假定一个变换f把一个集A变进一个拓扑空间的承载点集B,那末把f(A)的所有相对开集的象源全体当作A的一个拓扑亚基,就得到A的一个拓扑τ.这个拓扑τ 就是使f在A里连续的最粗的拓扑. 特别当f是在集A里定义的实函数(或者实泛函) [开拓定理——体策定理] 假定f是正常空间X的一个闭集B里的连续有界实函数,对任何x 它是下面实变函数连续函数性质的推广: 假定A是一个拓扑空间里的点集,f1,f2,¼是A里一列连续函数,一致收敛于函数f(也就是对任何正数e ,存在正整数N,使| fn(x)-f(x)|<e 对任何x [拓扑变换与同胚] 假定X和Y都是拓扑空间,f是一个把X的承载点集一对一地变上Y的承载点集的变换,在变换f下,X里的每个开集的象是Y里的开集,Y里的每个开集的象源也是X里的开集,那末称f为一个把X变上Y的拓扑变换(同胚变换),称X和Y在f下同胚或者拓扑地等价. 定理 把拓扑空间X的承载点集一对一地变上拓扑空间Y的承载点集的变换为拓扑变换的充分必要条件是:f可逆连续(就是f和f -1都是连续变换). |
随便看 |
数学辞典收录了524条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。