二、平均值及其精密度指标
[常用平均值的求法] 设
是某观测对象的一组观测数据。
名称 | 定义与符号 | 用途与说明 |
算 术 平 均 值 |   | 它在最小二乘法意义下是所求真值的最佳近似,是最常用的一种平均值 |
简 算 平 均 值 |  设 ,则  式中 是组数, A是常数, c是组距, 是第i组的频数,且  是第i组的组中值(即该组上下限的平均值) | 数据较多时,算术平均值常用此法计算 组数和组距根据数据的极差 适当选取 采取等组距c 变换 中的A常取为处在中间组的组中值 |
几 何 平 均 值 | 或  | 当对一组观测值 取常用对数 所得图形的分布曲线更为对称(同 比较)时,常用此法 |
加 权 平 均 值 |  式中 是第i个观测值 的对应权 | 计算用不同方法或不同条件观测同一物理量的均值时,常对不同可靠程度的数据给予不同的“权” |
中 位 数 | 观测值依大小顺序排列后处在中间位置的值。当n为偶数时,取为中间两数的算术平均 | 它是一种顺序统计量,能反映匀称观测值的取值中心 |
[算术平均值与离差] 观测对象的真值x可以用n次观测值
的算术平均值.

近似代替,并用离差

代替误差
。离差与误差有如下关系

(当n相当大)
[平均值的精密度指标]
| 相同精密度的观测 | 不同精密度的观测 |
观测值 权 平均值 标准差 真值x对算术平均值 的误差 |  1 算术平均值     |   加权平均值     |
的值愈小,表明观测值的平均值
(或
)与真值x的偏差愈小,精密度愈高,即平均值可信赖的程度愈高。